skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Fuwu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Messenger RNA (mRNA)-based therapeutic agents have demonstrated significant potential in recent times, particularly in the context of the COVID-19 pandemic outbreak. As a promising prophylactic and therapeutic strategy, polypeptide-based mRNA...

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Ye, Qingsong (Ed.)
    Biodegradable and adaptable polymeric materials are currently being studied due to their wide scope of potential applications, from nanomedicine to novel multifunctional materials. One such class of polymers are poly(disulfide)s, which contain repeating disulfide bonds in their main chain. Lipoic acid, or thioctic acid, is a biologically derived small molecule containing a 1,2-dithiolane ring capable of undergoing ring opening polymerization to yield poly(disulfide)s. In this review, we highlight the synthesis of lipoic acid-based poly(disulfide)s through thermal and thiolate-initiated ring opening polymerizations, and the development of methodology pertaining to the synthetic methods. We further discuss the biomedical applications of poly(disulfide)s, which have been widely used to construct various responsive biomaterials, including polymer-drug conjugates, nanoparticles, hydrogels, and adhesives. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. Free, publicly-accessible full text available July 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. null (Ed.)
  6. Abstract

    A series of glucose‐based degradable superabsorbent hydrogels with potential to tackle issues associated with sustainability, flooding, and drought has been designed and fabricated. These hydrophilic networks were constructed through integrating glucose as a primary building block –into cyclic oligomers and block polymers, which were combined into mechanically‐interlocked slide‐ring crosslinked materials. Crosslinking of slide ring α‐cyclodextrin/poly(ethylene glycol)‐type polyrotaxanes with acid‐functionalized ABA triblock copolymers comprised of mercaptopropionic acid‐functionalized poly(glucose carbonate (ethyl propargyl carbonate))‐b‐poly(ethylene glycol)‐b‐mercaptopropionic acid‐functionalized poly(glucose carbonate (ethyl propargyl carbonate)), afforded degradable superabsorbent hydrogels through establishment of chemically‐labile ester linkages, in addition to glycosidic and carbonate groups of the polymer precursors. With an emphasis on development of fundamental synthetic design strategies to achieve high‐performance superabsorbent hydrogels that could behave as robust materials, which are derived from natural components and exhibit hydrolytic degradability, effort went into optimization of the composition, structure, and topology leading to water uptake capacities >30× by mass. Investigations of composition‐structure‐topology‐morphology effects on properties as a function of variations of PEG main chain length, degree of α‐cyclodextrin coverage, and concentration of pre‐gel solution, indicated that the slide‐ring polymer and triblock copolymer networks feature high water uptake, tunable mechanical properties, and sustainability with construction from renewable natural products and in‐built degradability.

     
    more » « less